SPReM: Sparse Projection Regression Model For High-Dimensional Linear Regression
نویسندگان
چکیده
منابع مشابه
Accelerated Sparse Linear Regression via Random Projection
In this paper, we present an accelerated numerical method based on random projection for sparse linear regression. Previous studies have shown that under appropriate conditions, gradient-based methods enjoy a geometric convergence rate when applied to this problem. However, the time complexity of evaluating the gradient is as large as O(nd), where n is the number of data points and d is the dim...
متن کاملNearly Optimal Minimax Estimator for High Dimensional Sparse Linear Regression
We present estimators for a well studied statistical estimation problem: the estimation for the linear regression model with soft sparsity constraints (`q constraint with 0 < q ≤ 1) in the high-dimensional setting. We first present a family of estimators, called the projected nearest neighbor estimator and show, by using results from Convex Geometry, that such estimator is within a logarithmic ...
متن کاملRobust High-Dimensional Linear Regression
The effectiveness of supervised learning techniques has made them ubiquitous in research and practice. In high-dimensional settings, supervised learning commonly relies on dimensionality reduction to improve performance and identify the most important factors in predicting outcomes. However, the economic importance of learning has made it a natural target for adversarial manipulation of trainin...
متن کاملAccuracy Assessment for High - Dimensional Linear Regression
This paper considers point and interval estimation of the lq loss of an estimator in high-dimensional linear regression with random design. We establish the minimax rate for estimating the lq loss and the minimax expected length of confidence intervals for the lq loss of rate-optimal estimators of the regression vector, including commonly used estimators such as Lasso, scaled Lasso, square-root...
متن کاملA Stepwise Regression Method and Consistent Model Selection for High-dimensional Sparse Linear Models
We introduce a fast stepwise regression method, called the orthogonal greedy algorithm (OGA), that selects input variables to enter a p-dimensional linear regression model (with p À n, the sample size) sequentially so that the selected variable at each step minimizes the residual sum squares. We derive the convergence rate of OGA and develop a consistent model selection procedure along the OGA ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the American Statistical Association
سال: 2015
ISSN: 0162-1459,1537-274X
DOI: 10.1080/01621459.2014.892008